Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591777

RESUMO

Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/metabolismo , Remodelação Óssea , Osteogênese/fisiologia , Diferenciação Celular/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37947530

RESUMO

Toxocariasis remains an important neglected parasitic infection representing one of the most common zoonotic infections caused by the parasite Toxocara canis or, less frequently, by Toxocara cati. The epidemiology of the disease is complex due to its transmission route by accidental ingestion of embryonated Toxocara eggs or larvae from tissues from domestic or wild paratenic hosts. Even though the World Health Organization and Centers for Disease Control classified toxocariasis amongst the top six parasitic infections of priority to public health, global epidemiological data regarding the relationship between seropositivity and toxocariasis is limited. Although the vast majority of the infected individuals remain asymptomatic or experience a mild disease, the infection is associated with important health and socioeconomic consequences, particularly in underprivileged, tropical, and subtropical areas. Toxocariasis is a disease with multiple clinical presentations, which are classified into five distinct forms: the classical visceral larva migrans, ocular toxocariasis, common toxocariasis, covert toxocariasis, and cerebral toxocariasis or neurotoxocariasis. Anthelmintic agents, for example, albendazole or mebendazole, are the recommended treatment, whereas a combination with topical or systemic corticosteroids for specific forms is suggested. Prevention strategies include educational programs, behavioral and hygienic changes, enhancement of the role of veterinarians, and anthelmintic regimens to control active infections.


Assuntos
Anti-Helmínticos , Toxocaríase , Animais , Humanos , Toxocaríase/epidemiologia , Zoonoses/epidemiologia , Albendazol , Saúde Pública , Anti-Helmínticos/uso terapêutico
3.
SAGE Open Med Case Rep ; 11: 2050313X231198321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667742

RESUMO

Hypereosinophilic syndromes are a heterogeneous group of rare diseases characterized by eosinophil-related organ damage and peripheral blood hypereosinophilia. Hypereosinophilic syndromes may occur secondary to a variety of clinical entities, for example, drug hypersensitivity reactions, parasitic infections, autoimmune disorders, and malignancies. Toxocariasis is a parasitic infection caused by the larval stage of the Toxocara species. It is usually a childhood disease and invades organs such as the liver but can affect any organ. Hypereosinophilic syndrome and multiorgan involvement are very rare manifestations of Toxocara infection, especially in adults. However, the disease may be underdiagnosed because of different factors, including a lack of laboratory infrastructure in some countries, a lack of uniform case definitions, and limited surveillance infrastructure, with its estimation constituting a challenge. We, therefore, present a probable case of hypereosinophilic syndrome with multiorgan involvement secondary to infection with Toxocara canis in a 79-year-old Swiss female patient with a medical history of ischemic cerebrovascular insult and a curatively resected non-small-cell bronchial carcinoma, successfully treated with albendazole and steroids.

4.
PLoS Genet ; 19(8): e1010589, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552671

RESUMO

The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.


Assuntos
Adenosina Desaminase , Peixe-Zebra , Animais , Masculino , Camundongos , Adenosina Desaminase/metabolismo , Células Germinativas/metabolismo , Mamíferos/genética , Meiose/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sêmen/metabolismo , Testículo/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
SAGE Open Med Case Rep ; 11: 2050313X231183869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440975

RESUMO

Despite the fact that cardiac troponin (cTn) elevation is commonly seen in the acute phase of ischemic stroke, investigating its etiology represents a challenge for healthcare practitioners. Therefore, we describe the case of an 86-year-old woman with dyspnea and cTn-elevation within the first days following acute ischemic stroke and discuss potential differential diagnoses and diagnostic dilemmas.

6.
Clin Med Insights Case Rep ; 16: 11795476231181560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351465

RESUMO

Subacute thyroiditis (SAT) is a self-limited inflammatory disease and a rare cause of thyrotoxicosis. Although the exact etiology of SAT is not sufficiently understood, it is generally associated to viral infections. Current evidence highlights that SAT may be a potentially uncommon manifestation of ongoing Coronavirus disease 2019 (COVID-19) infection or a post-viral complication of the disease. Despite that SAT is a rare manifestation associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease both in ongoing and resolved COVID-19 infection, the ever-increasing numbers of COVID-19 patients strengthens the possibility that this particular disease entity will be of more immediate concern in the future. The current work aims to summarize the approach of SARS-CoV-2-associated SAT, present its pathophysiology, outline current research evidence found in the literature, and discuss potential differential diagnoses and diagnostic dilemmas through an illustrative case.

7.
Bone ; 167: 116611, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36395960

RESUMO

Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.


Assuntos
Tendões , Peixe-Zebra , Animais , Peixe-Zebra/genética , Osso e Ossos , Cartilagem
8.
Front Endocrinol (Lausanne) ; 13: 985304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120446

RESUMO

Low-density Lipoprotein Receptor-related Protein 5 (LRP5) functions as a co-receptor for Wnt ligands, controlling expression of genes involved in osteogenesis. In humans, loss-of-function mutations in LRP5 cause Osteoporosis-Pseudoglioma syndrome, a low bone mass disorder, while gain-of-function missense mutations have been observed in individuals with high bone mass. Zebrafish (Danio rerio) is a popular model for human disease research, as genetic determinants that control bone formation are generally conserved between zebrafish and mammals. We generated lrp5- knock-out zebrafish to study its role in skeletogenesis and homeostasis. Loss of lrp5 in zebrafish leads to craniofacial deformities and low bone mineral density (total body and head) at adult ages. To understand the mechanism and consequences of the observed phenotypes, we performed transcriptome analysis of the cranium of adult lrp5 mutants and siblings. Enrichment analysis revealed upregulation of genes significantly associated with hydrolase activity: mmp9, mmp13a, acp5a. acp5a encodes Tartrate-resistant acid phosphatase (TRAP) which is commonly used as an osteoclast marker, while Matrix metalloprotease 9, Mmp9, is known to be secreted by osteoclasts and stimulate bone resorption. These genes point to changes in osteoclast differentiation regulated by lrp5. To analyze these changes functionally, we assessed osteoclast dynamics in mutants and observed increased TRAP staining, significantly larger resorption areas, and developmental skeletal dysmorphologies in the mutant, suggesting higher resorptive activity in the absence of Lrp5 signaling. Our findings support a conserved role of Lrp5 in maintaining bone mineral density and revealed unexpected insights into the function of Lrp5 in bone homeostasis through moderation of osteoclast function.


Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteoclastos , Animais , Humanos , Ligantes , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mamíferos , Metaloproteinase 9 da Matriz , Fosfatase Ácida Resistente a Tartarato , Peixe-Zebra/genética
9.
iScience ; 25(9): 105028, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105588

RESUMO

Idiopathic scoliosis (IS) refers to abnormal spinal curvatures that occur in the absence of vertebral or neuromuscular defects. IS accounts for 80% of human spinal deformity, afflicts ∼3% of children worldwide, yet pathogenic mechanisms are poorly understood. A key role for cerebrospinal fluid (CSF) homeostasis in zebrafish spine development has been identified. Specifically, defects in cilia motility of brain ependymal cells (EC), CSF flow, and/or Reissner fiber (RF) assembly are observed to induce neuroinflammation, oxidative stress, abnormal CSF-contacting neuron activity, and urotensin peptide expression, all associating with scoliosis. However, the functional relevance of these observations to IS remains unclear. Here we characterize zebrafish katnb1 mutants as a new IS model. We define essential roles for Katnb1 in motile ciliated lineages, uncouple EC cilia and RF formation defects from spinal curvature, and identify abnormal CSF flow and cell stress responses as shared pathogenic signatures associated with scoliosis across diverse zebrafish models.

10.
Cell ; 184(4): 899-911.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545089

RESUMO

Changes in appendage structure underlie key transitions in vertebrate evolution. Addition of skeletal elements along the proximal-distal axis facilitated critical transformations, including the fin-to-limb transition that permitted generation of diverse modes of locomotion. Here, we identify zebrafish mutants that form supernumerary long bones in their pectoral fins. These new bones integrate into musculature, form joints, and articulate with neighboring elements. This phenotype is caused by activating mutations in previously unrecognized regulators of appendage patterning, vav2 and waslb, that function in a common pathway. This pathway is required for appendage development across vertebrates, and loss of Wasl in mice causes defects similar to those seen in murine Hox mutants. Concordantly, formation of supernumerary bones requires Hox11 function, and mutations in the vav2/wasl pathway drive enhanced expression of hoxa11b, indicating developmental homology with the forearm. Our findings reveal a latent, limb-like pattern ability in fins that is activated by simple genetic perturbation.


Assuntos
Osso e Ossos/embriologia , Extremidades/embriologia , Peixe-Zebra/embriologia , Actinas/metabolismo , Nadadeiras de Animais/embriologia , Animais , Sequência de Bases , Padronização Corporal , Sistemas CRISPR-Cas/genética , Linhagem da Célula , Epistasia Genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Reporter , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Curr Biol ; 30(14): 2805-2814.e3, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32559448

RESUMO

The spine is a defining feature of the vertebrate body plan. However, broad differences in vertebral structures and morphogenetic strategies occur across vertebrate groups, clouding the homology between their developmental programs. Analysis of a zebrafish mutant, spondo, whose spine is dysmorphic, prompted us to reconstruct paleontological evidence, highlighting specific transitions during teleost spine evolution. Interestingly, the spondo mutant recapitulates characteristics present in basal fishes, not found in extant teleosts. Further analysis of the mutation implicated the teleost-specific notochord protein, Calymmin, as a key regulator of spine patterning in zebrafish. The mutation in cmn results in loss of notochord sheath segmentation, altering osteoblast migration to the developing spine, and increasing sensitivity to somitogenesis defects associated with congenital scoliosis in amniotes. These data suggest that signals from the notochord define the evolutionary identity of the spine and demonstrate how simple shifts in development can revert traits canalized for about 250 million years.


Assuntos
Evolução Biológica , Padronização Corporal/genética , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/genética , Notocorda/metabolismo , Filogenia , Coluna Vertebral/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Celobiose/análogos & derivados , Proteínas da Matriz Extracelular/genética , Mutação , Osteoblastos/patologia , Proteínas de Peixe-Zebra/genética
13.
Curr Biol ; 30(12): 2363-2373.e6, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32386528

RESUMO

Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Ventrículos Cerebrais/metabolismo , Inflamação/fisiopatologia , Morfogênese , Medula Espinal/imunologia , Coluna Vertebral/crescimento & desenvolvimento , Peixe-Zebra/anormalidades , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Humanos , Medula Espinal/anormalidades , Medula Espinal/crescimento & desenvolvimento , Coluna Vertebral/anormalidades , Peixe-Zebra/crescimento & desenvolvimento
14.
Genet Med ; 22(6): 1040-1050, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32103185

RESUMO

PURPOSE: The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS: We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS: We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION: Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.


Assuntos
Encefalopatias , Microcefalia , Animais , Proliferação de Células/genética , Homozigoto , Humanos , Camundongos , Microcefalia/genética , Peixe-Zebra/genética
15.
Elife ; 92020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31985398

RESUMO

The use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages. We find that the phenotypes are due to loss-of-function in the non-classical cadherin celsr1a. The premature aging is not associated with increased cellular senescence or telomere length but is a result of a failure to maintain progenitor cell populations. We show that celsr1a is essential for maintenance of stem cell progenitors in late stages. Caloric restriction can ameliorate celsr1a aging phenotypes. These data suggest that celsr1a function helps to mediate stem cell maintenance during maturation and homeostasis of tissues and thus regulates the onset or expressivity of aging phenotypes.


Assuntos
Senilidade Prematura/genética , Envelhecimento/genética , Caderinas/genética , Caderinas/metabolismo , Homeostase/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Mutação/genética , Fenótipo , Células-Tronco/metabolismo , Peixe-Zebra
16.
Development ; 147(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31932352

RESUMO

Evolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor (csf1r) function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts. We demonstrate the retention of two functional paralogues of csf1r in zebrafish. Mutant analysis indicates that the paralogues have shared, non-redundant roles in regulating osteoclast activity during the formation of the adult skeleton. csf1ra, however, has adopted unique roles in pigment cell patterning not seen in the second paralogue. We identify a unique noncoding element within csf1ra of fishes that is sufficient for controlling gene expression in pigment cells during development. As a role for Csf1r signaling in pigmentation is not observed in mammals or birds, it is likely that the overlapping roles of the two paralogues released functional constraints on csf1ra, allowing the signaling capacity of Csf1r to serve a novel function in the evolution of pigment pattern in fishes.


Assuntos
Desenvolvimento Embrionário , Proteínas Tirosina Quinases/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Osso e Ossos/metabolismo , Dentição , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Mutação/genética , Fenótipo , Pigmentação/genética , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Dev Cell ; 49(1): 77-88.e7, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30880002

RESUMO

Phagocytic immune cells such as microglia can engulf and process pathogens and dying cells with high efficiency while still maintaining their dynamic behavior and morphology. Effective intracellular processing of ingested cells is likely to be crucial for microglial function, but the underlying cellular mechanisms are poorly understood. Using both living fish embryos and mammalian macrophages, we show that processing depends on the shrinkage and packaging of phagosomes into a unique cellular compartment, the gastrosome, with distinct molecular and ultra-structural characteristics. Loss of the transporter Slc37a2 blocks phagosomal shrinkage, resulting in the expansion of the gastrosome and the dramatic bloating of the cell. This, in turn, affects the ability of microglia to phagocytose and migrate toward brain injuries. Thus, this work identifies a conserved crucial step in the phagocytic pathway of immune cells and provides a potential entry point for manipulating their behavior in development and disease.


Assuntos
Antiporters/genética , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/genética , Microglia/metabolismo , Fagossomos/ultraestrutura , Animais , Apoptose/genética , Compartimento Celular/genética , Células HeLa , Humanos , Macrófagos/ultraestrutura , Camundongos , Microglia/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Fagócitos/ultraestrutura , Fagocitose/genética , Fagossomos/genética , Células RAW 264.7 , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
18.
Proc Natl Acad Sci U S A ; 115(34): E8037-E8046, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082390

RESUMO

The type I collagenopathies are a group of heterogeneous connective tissue disorders, that are caused by mutations in the genes encoding type I collagen and include specific forms of osteogenesis imperfecta (OI) and the Ehlers-Danlos syndrome (EDS). These disorders present with a broad disease spectrum and large clinical variability of which the underlying genetic basis is still poorly understood. In this study, we systematically analyzed skeletal phenotypes in a large set of zebrafish, with diverse mutations in the genes encoding type I collagen, representing different genetic forms of human OI, and a zebrafish model resembling human EDS, which harbors a number of soft connective tissues defects, typical of EDS. Furthermore, we provide insight into how zebrafish and human type I collagen are compositionally and functionally related, which is relevant in the interpretation of human type I collagen-related disease models. Our studies reveal a high degree of intergenotype variability in phenotypic expressivity that closely correlates with associated OI severity. Furthermore, we demonstrate the potential for select mutations to give rise to phenotypic variability, mirroring the clinical variability associated with human disease pathology. Therefore, our work suggests the future potential for zebrafish to aid in identifying unknown genetic modifiers and mechanisms underlying the phenotypic variability in OI and related disorders. This will improve diagnostic strategies and enable the discovery of new targetable pathways for pharmacological intervention.


Assuntos
Colágeno Tipo I , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos , Osteogênese Imperfeita , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
19.
Reproduction ; 157(4): 383-398, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763280

RESUMO

Germ cell differentiation and maintenance relies on complex regulation of mitotic and meiotic progression. Cyclin-dependent kinases (CDKs) and their activating cyclin partners are known to have specialized roles in regulating cell cycle progression across tissues, including germ cells. Very little is known about CDK/cyclin function in zebrafish or the regulation of germ cell maintenance and differentiation. In a forward genetic screen for gonadogenesis defects in zebrafish, a mutation disrupting cdk21 (cyclin-dependent kinase 21) was identified, which caused gonad hypoplasia, reduced fertility and failure of female sex specification. The cdk21 gene is unique to fishes, though the encoded protein is related to the D-cyclin partners Cdk4 and Cdk6, which are known G1 cell cycle regulators. In the testis, cdk21 mutant germ cells exhibited cell cycle defects such as diminished proliferation, prolonged meiosis and delayed sperm differentiation. Furthermore, cdk21 mutants failed to maintain germ cells following breeding. Based on these findings, we propose that cdk21 regulates spermatogonial proliferation, progression through meiosis and germline stem cell activation in the testis. In addition, we investigated cdk4 and cdk6 in zebrafish development and found that each has distinct expression patterns in the gonads. Mutant analysis demonstrated that cdk6 was necessary for viability beyond larval stages. In contrast, cdk4 mutants were viable but were all male with low breeding success and sperm overabundance. Our analysis demonstrated that zebrafish harbor three genes of the cdk4/6 family, cdk4, cdk6 and cdk21, with cdk21 having an essential role in germ cell development in the testis.


Assuntos
Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Células Germinativas/fisiologia , Meiose , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Quinases Ciclina-Dependentes/genética , Ciclinas/metabolismo , Feminino , Fase G1 , Células Germinativas/citologia , Masculino , Oogênese , Fosforilação , Espermatogênese , Proteínas de Peixe-Zebra/genética
20.
Genetics ; 207(2): 609-623, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835471

RESUMO

Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.


Assuntos
Desenvolvimento Ósseo/genética , Genes Dominantes , Mutagênese , Pigmentação da Pele/genética , Peixe-Zebra/genética , Animais , Haplótipos , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...